MC Flux Fit Using ND Data

Hongyue Duyang
University of South Carolina

Introduction

- Neutrino flux is not well simulated. Large uncertainties associated with the proton-nucleon hadron production process.
- We can use ND data to correct hadron production simulation and re-weight MC to get better agreement with data.
- Predict FD/ND ratio.

Low-v Method

Standard neutrino-nucleon differential cross-section:

$$\frac{d\sigma^{\nu(\bar{\nu})}}{dxdy} = \frac{G_F^2 ME}{\pi} \times \left[\left(1 - y - \frac{Mxy}{2E} \right) F_2^{\nu(\bar{\nu})} + \frac{y^2}{2} 2x F_1^{\nu(\bar{\nu})} \pm y \left(1 - \frac{y}{2} \right) x F_3^{\nu(\bar{\nu})} \right]$$

$$\frac{d\sigma}{dv} = A(1 + \frac{Bv_0}{AE} - \frac{Cv_0^2}{A2E^2})$$
 v= Ev - Emu

In $v \rightarrow 0$ limit, cross-section is independent of neutrino energy.

$$N(E)_{v<0.5} \propto \phi(E)$$

There will be error from none zero v, but smaller than error from xsec.

To begin with, will use full CC spectrum.

Parametrization of K/π Production

Parameterize the inclusive invariant cross sections as a function of pT and xR:

$$F(xR)*G(pT)*H(xR, pT)$$

Constrain F, G, H using ND data and hadron production data (where availabe)

For example, a BMPT type function:

$$\left(E \times \frac{d^{3}\sigma}{dp^{3}}\right) = A\left(1 - x_{R}\right)^{\alpha}\left(1 + Bx_{R}\right)x_{R}^{-\beta} \times \left(1 + a'(x_{R})p_{T} + b'(x_{R})p_{T}^{2}\right)e^{-a'(x_{R})p_{T}}$$

Constrain the π +/ π - and K+/K- ratio

$$r(\pi) = 1.05 \cdot (1 + x_R)^{2.65}$$

$$r(K) = 1.15 \cdot (1 - x_R)^{-3.17}$$

Fit Process

Plan

- Start with NDOS data.
- Use both G4NUMI and Fluka beam MC simulation.
- Use ND data when it's ready.
- Predict FD/ND central value.
- Also use hadron production data if available. (This allows for getting an error band.)
- Combine with Minos+ flux fit result.

The End